MEAN WELL

Features

- Constant Current mode output
- Metal housing design with functional Ground
- Built-in active PFC function
- No load / Standby power consumption <0.5W
- IP67 / IP65 rating for indoor or outdoor installations
- Function options: output adjustable via potentiometer;

3 in 1 dimming (dim-to-off); Smart timer dimming; DALI

- Typical lifetime>50000 hours
- 5 years warranty
\square Applications
- LED street lighting
- LED harbor lighting
- LED bay lighting
- LED greenhouse lighting
- LED flood lighting
- Type "HL" for use in Class I, Division 2 hazardous (Classified) location.
- GTIN CODE

MW Search: https://www.meanwell.com/serviceGTIN.aspx

- Description

ELG-200-C series is a 200W LED AC/DC driver featuring the constant current mode and high voltage output. ELG-200-C operates from 100~305VAC and offers models with different rated current ranging between 700 mA and 2100 mA . Thanks to the high efficiency up to 93%, with the fanless design, the entire series is able to operate for $-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$ case temperature under free air convection. The design of metal housing and IP67/IP65 ingress protection level allows this series to fit both indoor and outdoor applications. ELG-200-C is equipped with various function options, such as dimming methodologies, so as to provide the optimal design flexibility for LED lighting system.

- Model Encoding

Type	IP Level	Function	Note
Blank	IP67	Io fixed.	In Stock
A	IP65	Io adjustable through built-in potentiometer.	In Stock
B	IP67	3 in 1 dimming function (0~10Vdc, 10V PWM signal and resistance)	In Stock
AB	IP65	 3 in 1 dimming function (0~10Vdc, 10V PWM signal and resistance $)$	In Stock
DA	IP67	DALI control technology.	In Stock
Dx	IP67	Built-in Smart timer dimming function by user request.	By request
D2	IP67	Built-in Smart timer dimming and programmable function.	In Stock

SPECIFICATION

MODEL		ELG-200-C700 \square	ELG-200-C1050 \square	ELG-200-C1400 \square	ELG-200-C1750 \square	ELG-200-C2100 \square
OUTPUT	RATED CURRENT	700 mA	1050 mA	1400 mA	1750 mA	2100 mA
	RATED POWER	200VAC ~ 305VAC				
		200.2W	199.5W	198.8W	199.5W	201.6W
		100VAC ~ 180VAC				
		150.5W	150.15W	149.8W	150.5W	151.2W
	CONSTANT CURRENT REGION Note. 2	142 ~ 286V	95 ~ 190V	71 ~ 142V	57 ~ 114V	48 ~ 96V
	OPEN CIRCUIT VOLTAGE(max.)	300V	200 V	160 V	120 V	105 V
	CURRENT ADJ. RANGE	Adjustable for A/AB-Type only (via built-in potentiometer)				
		$350 \sim 700 \mathrm{~mA}$	$525 \sim 1050 \mathrm{~mA}$	$700 \sim 1400 \mathrm{~mA}$	$875 \sim 1750 \mathrm{~mA}$	$1050 \sim 2100 \mathrm{~mA}$
	CURRENT RIPPLE	5.0\% max. @rated current				
	CURRENT TOLERANCE	$\pm 5.0 \%$				
	SET UP TIME Note. 4	$800 \mathrm{~ms} / 115 \mathrm{VAC}, 500 \mathrm{~ms} / 230 \mathrm{VAC}$				
INPUT	VOLTAGE RANGE Note. 3	100 ~305VAC 142 ~ 431VDC (Please refer to "STATIC CHARACTERISTIC" section)				
	FREQUENCY RANGE	$47 \sim 63 \mathrm{~Hz}$				
	POWER FACTOR (Typ.)	(Please refer to "POWER FACTOR (PF) CHARACTERISTIC" section)				
	TOTAL HARMONIC DISTORTION	THD<20\%(@load $\geqq 50 \% / 115 \mathrm{VC}, 230 \mathrm{VAC}$; @load $\geqq 75 \% / 277 \mathrm{VAC})$ (Please refer to "TOTAL HARMONIC DISTORTION(THD)" section)				
	EFFICIENCY (Typ.)	93\%	93\%	92\%	92\%	92\%
	AC CURRENT (Typ.)	1.8A/115VAC 1.0A/230VAC 1.0A/277VAC				
	INRUSH CURRENT(Typ.)	COLD START 65A(twidth=680 μ s measured at 50\% Ipeak)/230VAC; Per NEMA 410				
	MAX. No. of PSUs on 16A CIRCUIT BREAKER	2 units (circuit breaker of type B) / 4 units (circuit breaker of type C) at 230VAC				
	LEAKAGE CURRENT	$<0.75 \mathrm{~mA} / 277 \mathrm{VAC}$				
	NO LOAD / STANDBY POWER CONSUMPTION	No load power consumption <0.5W for Blank / A / Dx / D2-Type Standby power consumption <0.5W for B / AB / DA-Type				
PROTECTION	SHORT CIRCUIT	Hiccup mode, recovers automatically after fault condition is removed				
	OVER VOLTAGE	315~370V	205 ~ 250V	160 ~ 180V	$125 \sim 150 \mathrm{~V}$	105 ~ 130V
		Shut down o/p voltage, re-power on to recover				
	OVER TEMPERATURE	Shut down o/p voltage, re-power on to recover				
ENVIRONMENT	WORKING TEMP.	Tcase $=-40 \sim+85^{\circ} \mathrm{C}$ (Please refer to " OUTPUT LOAD vs TEMPERATURE" section)				
	MAX. CASE TEMP.	Tcase $=+85^{\circ} \mathrm{C}$				
	WORKING HUMIDITY	$20 \sim 95 \%$ RH non-condensing				
	STORAGE TEMP., HUMIDITY	$-40 \sim+80^{\circ} \mathrm{C}, 10 \sim 95 \% \mathrm{RH}$				
	TEMP. COEFFICIENT	$\pm 0.03 \% /{ }^{\circ} \mathrm{C}\left(0 \sim 60^{\circ} \mathrm{C}\right)$				
	VIBRATION	$10 \sim 500 \mathrm{~Hz}, 5 \mathrm{G} 12 \mathrm{~min}$./1cycle, period for 72 min . each along $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ axes				
SAFETY \& EMC	SAFETY STANDARDS	UL8750(type"HL"), CSA C22.2 No. 250.13-12;BS EN/EN/AS/NZS 61347-1,BS EN/EN/AS/NZS 61347-2-13 independent, BS EN/EN62384;GB19510.14,GB19510.1;EAC TP TC 004;BIS IS15885(for 700A only); IP65 or IP67;KC61347-1,KC61347-2-13 approved				
	DALI STANDARDS	Compliance to IEC62386-101,102,(207 by request) for DA Type only				
	WITHSTAND VOLTAGE	I/P-O/P:3.75KVAC I/P-FG:2.0KVAC O/P-FG:1.5KVAC				
	ISOLATION RESISTANCE	I/P-O/P, I/P-FG, O/P-FG:100M Ohms / 500VDC / $25^{\circ} \mathrm{C} / 70 \%$ RH				
	EMC EMISSION	Compliance to BS EN/EN55015,BS EN/EN61000-3-2 Class C (@load $\geqq 50 \%$) ; BS EN/EN61000-3-3; GB17625.1, GB17743;EAC TP TC 020; KC KN15, KN61547				
	EMC IMMUNITY	Compliance to BS EN/EN61000-4-2,3,4,5,6,8,11; BS EN/EN61547, light industry level(surge immunity:Line-Earth:6KV, Line-Line:4KV);EAC TP TC 020; KC KN15, KN61547				
OTHERS	MTBF	2728.6 K hrs min. Telcordia SR-332 (Bellcore) ; 217.6 K hrs min. MIL-HDBK-217F ($25^{\circ} \mathrm{C}$)				
	DIMENSION	244*71*37.5 mm (L*W*H)				
	PACKING	$1.22 \mathrm{Kg} ; 12 \mathrm{pcs} / 15.2 \mathrm{~kg} / 0.72 \mathrm{CUFT}$				
NOTE	1. All parameters NOT specially mentioned are measured at 230 VAC input, rated current and $25^{\circ} \mathrm{C}$ of ambient temperature. 2. Please refer to "DRIVING METHODS OF LED MODULE". 3. De-rating may be needed under low input voltages. Please refer to "STATIC CHARACTERISTIC" sections for details. 4. Length of set up time is measured at first cold start. Turning ON/OFF the power supply may lead to increase of the set up time. 5. The driver is considered as a component that will be operated in combination with final equipment. Since EMC performance will be affected by the complete installation, the final equipment manufacturers must re-qualify EMC Directive on the complete installation again. 6. This series meets the typical life expectancy of $>50,000$ hours of operation when Tcase, particularly (tc) point (or TMP, per DLC), is about $85^{\circ} \mathrm{C}$ or less. 7. Please refer to the warranty statement on MEAN WELL's website at http://www.meanwell.com 8. The ambient temperature derating of $3.5^{\circ} \mathrm{C} / 1000 \mathrm{~m}$ with fanless models and of $5^{\circ} \mathrm{C} / 1000 \mathrm{~m}$ with fan models for operating altitude higher than $2000 \mathrm{~m}(6500 \mathrm{ft})$. 9. For any application note and IP water proof function installation caution, please refer our user manual before using. https://www.meanwell.com/Upload/PDF/LED_EN.pdf 10. To fulfill requirements of the latest ErP regulation for lighting fixtures, this LED power supply can only be used behind a switch without permanently connected to the mains. ※ Product Liability Disclaimer : For detailed information, please refer to https://www.meanwell.com/serviceDisclaimer.aspx					

- BLOCK DIAGRAM

PFC fosc : 50~120KHz PWM fosc : 60~130KHz

- DRIVING METHODS OF LED MODULE

※ This series works in constant current mode to directly drive the LEDs.

Typical output current normalized by rated current (\%)

DIMMING OPERATION

※ 3 in 1 dimming function (for B/AB-Type)

* DIM + for B/AB-Type
- Output constant current level can be adjusted by applying one of the three methodologies between DIM+ and DIM-:
$0 \sim 10 \mathrm{VDC}$, or 10 V PWM signal or resistance.
DA- for DA-Type DA- for DA-Type
- Direct connecting to LEDs is suggested. It is not suitable to be used with additional drivers.
- Dimming source current from power supply: $100 \mu \mathrm{~A}$ (typ.)
© Applying additive $0 \sim 10 \mathrm{VDC}$

"DO NOT connect "DIM- to Vo-"

© Applying additive 10 V PWM signal (frequency range $100 \mathrm{~Hz} \sim 3 \mathrm{KHz}$):

Applying additive resistance:

Note : 1. Min. dimming level is about 8% and the output current is not defined when $0 \%<$ Iout $<8 \%$.
2. The output current could drop down to 0% when dimming input is about $0 \mathrm{k} \Omega$ or 0 Vdc , or 10 V PWM signal with 0% duty cycle.
※ DALI Interface (primary side; for DA-Type)

- Apply DALI signal between DA+ and DA-.
- DALI protocol comprises 16 groups and 64 addresses.
- First step is fixed at 8% of output.

※ Smart timer dimming function (for Dxx-Type by User definition)

MEAN WELL Smart timer dimming primarily provides the adaptive proportion dimming profile for the output constant current level to perform up to 14 consecutive hours. 3 dimming profiles hereunder are defined accounting for the most frequently seen applications. If other options may be needed, please contact MEAN WELL for details.

Ex: © D01-Type: the profile recommended for residential lighting

Set up for D01-Type in Smart timer dimming software program:

	T1	T2	T3	T4
TIME $^{* *}$	$06: 00$	$07: 00$	$11: 00$	---
LEVEL** *	100%	70%	50%	70%

**: TIME matches Operating Time in the diagram whereas LEVEL matches Dimming Level.
Example: If a residential lighting application adopts D01-Type, when turning on the power supply at $6: 00 \mathrm{pm}$, for instance:
[1] The power supply will switch to the constant current level at 100\% starting from 6:00pm.
[2] The power supply will switch to the constant current level at 70\% in turn, starting from 0:00am, which is 06:00 after the power supply turns on.
[3] The power supply will switch to the constant current level at 50% in turn, starting from 1:00am, which is 07:00 after the power supply turns on.
[4] The power supply will switch to the constant current level at 70\% in turn, starting from 5:00am, which is 11:00 after the power supply turns on. The constant current level remains till 8:00am, which is 14:00 after the power supply turns on.

Ex: © D02-Type: the profile recommended for street lighting
 Set up for D02-Type in Smart timer dimming software program:

	T1	T2	T3	T4	T5
TIME** *	$01: 00$	$03: 00$	$8: 00$	$11: 00$	---
LEVEL** *	50%	80%	100%	60%	80%

**: TIME matches Operating Time in the diagram whereas LEVEL matches Dimming Level.
Example: If a street lighting application adopts D02-Type, when turning on the power supply at $5: 00 \mathrm{pm}$, for instance:
[1] The power supply will switch to the constant current level at 50% starting from 5:00pm.
[2] The power supply will switch to the constant current level at 80% in turn, starting from 6:00pm, which is 01:00 after the power supply turns on.
[3] The power supply will switch to the constant current level at 100\% in turn, starting from 8:00pm, which is 03:00 after the power supply turns on.
[4] The power supply will switch to the constant current level at 60% in turn, starting from 1:00am, which is 08:00 after the power supply turns on.
[5] The power supply will switch to the constant current level at 80% in turn, starting from 4:00am, which is 11:00 after the power supply turns on. The constant current level remains till 6:30am, which is 14:00 after the power supply turns on.

Set up for D03-Type in Smart timer dimming software program:

	T1	T2	T3
TIME**	$01: 30$	$11: 00$	---
LEVEL**	70%	100%	70%

**: TIME matches Operating Time in the diagram whereas LEVEL matches Dimming Level.
Example: If a tunnel lighting application adopts D03-Type, when turning on the power supply at 4:30pm, for instance:
[1] The power supply will switch to the constant current level at 70% starting from 4:30pm.
[2] The power supply will switch to the constant current level at 100\% in turn, starting from 6:00pm, which is 01:30 after the power supply turns on. [3] The power supply will switch to the constant current level at 70\% in turn, starting from 5:00am, which is 11:00 after the power supply turns on. The constant current level remains till 6:30am, which is 14:00 after the power supply turns on.

- OUTPUT LOAD vs TEMPERATURE(Note.7)

STATIC CHARACTERISTIC

※ De-rating is needed under low input voltage.

■ TOTAL HARMONIC DISTORTION (THD)
※ 700 mA Model, Tcase at $75^{\circ} \mathrm{C}$

POWER FACTOR (PF) CHARACTERISTIC

EFFICIENCY vs LOAD
ELG-200-C series possess superior working efficiency that up to 93% can be reached in field applications.
※ 700 mA Model, Tcase at $75^{\circ} \mathrm{C}$

Tcase (${ }^{\circ} \mathrm{C}$)

MECHANICAL SPECIFICATION

※ Blank-Type

※ A-Type

※ AB-Type

※ B/DA/D2-Type

※ 3Y Model (3-wire input)

(o) Note1: Please connect the case to PE for the complete EMC deliverance and safety use.
© Note2: Please contact MEAN WELL for input wiring option with PE.

- Installation Manual

Please refer to : http://www.meanwell.com/manual.html

